
Polariton optics of semiconductor photonic dots: weak and strong coupling limits

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys.: Condens. Matter 16 S3703

(http://iopscience.iop.org/0953-8984/16/35/012)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 17:18

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/16/35
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 16 (2004) S3703–S3719 PII: S0953-8984(04)83273-9

Polariton optics of semiconductor photonic dots: weak
and strong coupling limits

N I Nikolaev, A Smith and A L Ivanov

School of Physics and Astronomy, Cardiff University, PB 913, Cardiff CF24 3YB, UK

Received 6 July 2004
Published 20 August 2004
Online at stacks.iop.org/JPhysCM/16/S3703
doi:10.1088/0953-8984/16/35/012

Abstract
We develop coherent optics of dipole-active,dispersionless excitons in spherical
semiconductor photonic dots (PDs). In the absence of any incoherent scattering,
both the strong and weak coupling regimes can intrinsically be realized
simply by changing the parameters of the dot and surrounding medium. A
criterion, which attributes the transition between these two regimes to a discrete
topological change of the relevant dispersion curves, is found and approximated
by an analytic expression. The transition depends upon the intrinsic radiative
lifetime of the PD photon eigenstates, i.e. it is determined by the parameters of
the structure (the oscillator strength of the exciton–photon interaction, PD radius
and the ratio of the background dielectric constants inside and outside of the
dot). We propose the use of high-precision modulation spectroscopy in order
to visualize the above ‘phase’ transition between a well-developed polariton
picture (the strong coupling regime) and weakly-interacting exciton and PD
photon states (the weak coupling regime). It is shown that the radiative decay
of optically dressed PD excitons, coherently distributed among the relevant
PD eigenstates, is non-monotonous against the dot radius a: a size-dependent
increase of the effective oscillator strength at small a saturates at a ∼ λ, and
with a increasing further towards a � λ the optical lifetime of excitons starts
to increase proportionally to a, reflecting the ballistic escape of nearly bulk
polaritons from the PD. The numerical simulations are scaled to dispersionless
excitons in PDs fabricated from cyanine dye J aggregates.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of three-dimensional light-trapping has attracted considerable attention in recent
years. A cavity built with dimensions of the order of the wavelength of light, λ, such as
a spherical photonic dot (PD), serves to form an optical resonator, which has been shown
to provide insight into questions of fundamental physics as well as promising many novel
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applications (see for example [1, 2] and many references therein). One of the most attractive
applications is the coupling of light modes between a PD and a semiconductor quantum dot
(QD—a structure with dimensions much less than the wavelength of light) embedded inside
of it [3, 4].

Pioneering work on the scattering of light from spheres with constant dielectric permittivity
was done by Mie [5] at the beginning of the last century, and the conjugate eigen-mode
problem was later discussed by Stratton [6] (see also [7]). Polariton modes [8, 9] in an ionic
crystal sphere were investigated by Fuchs and Kliewer [10], who showed that every radiative
polariton mode contributes a Lorentzian peak to the cross section for scattering, extinction and
absorption, from the sphere. Polariton modes in optical and electronic confinement structures
such as microcrystallites [11–13] and quantum dots [14, 15] have been studied, where the
radius of the structure is so small that features in the polariton dispersion arise mainly from
size quantization of the excitonic energy. Ajiki et al have recently presented polariton optics
in a weak exciton–photon interaction regime for large-size photonic dots [16, 17] using a
microscopic non-local theory [18].

The nature of a polariton mode depends upon the strength of exciton–photon interaction
(oscillator strength) in the material, and how close the photon frequency is to the excitonic
resonance [8, 9, 19, 20]. In materials with a high oscillator strength the polariton modes are
formed from a hybridization of a photon mode and the exciton, and this is called the strong
coupling regime. In the opposite case, the weak coupling regime, materials with low oscillator
strengths exhibit polariton modes which are only slightly perturbed from the non-interacting
photon and exciton dispersions. Tait has investigated the transition between these two regimes
for polaritons in bulk semiconductors [19]: his theory uses the incoherent scattering rate, γx , as
a control parameter, so that by changing temperature, and hence γx , one realizes the two limits.
In contrast we present a model for the coherent polariton optics of dispersionless excitons in
a single spherical PD, which assumes that the incoherent scattering rate is small and can be
neglected, γx = 0. We demonstrate that the transition between the weak and strong coupling
regimes occurs due to changes in the intrinsic optical decay of PD excitons, γr , via changes in
the system parameters.

In this paper we develop the polariton optics of mid-size (a few photonic wavelengths)
semiconductor PDs, and in particular study a transition between the weak and strong coupling
regimes of exciton–photon interaction. Our results can be directly applied to spherical PDs
fabricated from a cyanine dye J aggregate material. The dispersionless Frenkel excitons in
these organic semiconductors have been studied recently [21].

In section 2 we review the dispersion equations for polariton modes of spherical PDs. We
introduce an entirely optically coherent picture (no incoherent damping) and proceed to classify
the polariton modes for any strength of PD-exciton–photon interaction. In section 3 we derive
analytical approximations of the radiative lifetime of the polariton branches as a function of
the photonic dot radius, and use the coherent distribution of excitons to determine the total
radiative lifetime. In section 4 the topology of the polariton dispersion curves is shown to alter
from the weak-coupling regime to the strong-coupling regime as the parameters of the system
are changed. We derive an analytic approximation to describe the critical values at which
this discrete transition occurs, and illustrate how it might be observed using high-precision
modulation spectroscopy. Finally section 5 summarizes our conclusions.

2. Classification of PD polaritons

The set of macroscopic polariton equations for the resonantly interacting light field E and
excitonic polarization P is given by [9]
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(1)

Here εb is the high frequency background dielectric constant of the optically isotropic
semiconductor, ωp is the polariton Rabi frequency, h̄ωT is the exciton energy, Mx is the
exciton translational mass, and γx is the rate of incoherent scattering of excitons. For Frenkel
excitons in isotropic crystals, Mx can be large so that the spatial dispersion associated with
excitons is negligible. In this case, for the transverse (div E = 0) polariton waves of frequency
ω and wavevector k in bulk materials, equations (1) yield

k2c2

ω2
= ε(ω) = εb

[
1 +

ω2
p

ω2
T − iωγx − ω2

]
, (2)

while the longitudinal mode (curl E = 0) is characterized by ωL =
√

ω2
T + ω2

p.

For a spherical photonic dot, the PD polariton (quasi-) eigenstates are the solutions of
equations (1), written in spherical co-ordinates and satisfying the boundary conditions for the
light field. Two Maxwellian boundary conditions refer to the spherical surface at r = a (a is the
PD radius) and require the continuous behaviour of the tangential components of the electric,
Eτ , and magnetic, Hτ , fields. The third boundary condition requires the light field at r → ∞
to have an outgoing part only (no incoming field). It is the third boundary condition which is
responsible for the complex PD polariton eigen-frequencies, ω = ωpol, even if the incoherent
scattering of excitons is neglected, i.e. γx = 0. As we demonstrate below, for the photonic
dots we are dealing with, the optical lifetime of PD photons is short—in a sub-picosecond time
scale—so that the ‘optical evaporation’ of PD polaritons is rather effective, and Im{ωpol} is
usually much larger than γx . Thus, in further analysis we neglect the γx -terms in equations (1)
and (2).

For the transverse light field (div E = 0), the PD polariton dispersion equations are given
by [10, 22]

jl(k1a)H (1)′
l (k2a) − h(1)

l (k2a)J ′
l (k1a) = 0, (3)

for the TE modes, and

ε jl(k1a)H (1)′
l (k2a) − εdh(1)

l (k2a)J ′
l (k1a) = 0, (4)

for the TM modes. Here Jl(z) = z jl(z) and H (1)

l (z) = zh(1)

l (z), where jl(z) and hl(z) are
spherical Bessel and Hankel functions of the first kind; k1 = k1(ω) = ω

√
ε/c, where ε = ε(ω)

is given by equation (2); k2 = k2(ω) = ω
√

εd/c, where εd is the constant dielectric permittivity
of the material surrounding the sphere. The dispersion equations (3) and (4) are similar to those
discussed in [6] for PDs without excitonic resonance. Note that the TE and TM modes, given
by equations (3) and (4), have a longitudinal component without violating the div E = 0
condition. The subscript l refers to the angular momentum of the modes, which are frequency
degenerate with respect to the momentum projection quantum number, m.

In this work only modes with the lowest possible angular momentum number, l = 1, [23]
(TE1 and TM1) will be considered. In the following analysis we will frequently use the
dimensionless, normalized variables: frequency ω̃ = ω/ωT , Rabi frequency ω̃p = ωp/ωT , PD
radius ã = √

εbωT a/c, and dielectric permittivity ε̃ = εd/εb.
For l = 1, the PD polariton dispersion equations (3) and (4) reduce to

k1a = arctan

[
k1k2

2a

ik2
1k2a − k2

1 + k2
2

]
+ nπ, (5)
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(a)

(b)

Figure 1. The dependence of the frequency of the photon modes on the PD radius for (a) TE1
modes and (b) TM1 modes; ω̃p = 0 and ε̃ = 0.5.

for the TE1 modes, and

k1a = arctan

[−ik1a[k2
1k2

2a2 + (1 − ik2a)(k2
2 − k2

1)]

k2
1k3

2a3 + (k2a + i)(k2
1 − k2

2)

]
+ nπ, (6)

for the TM1 modes. Here n = 0, 1, 2, . . . is the energy (radial) quantum number.
The photon eigen-frequencies ω̃0

n against the dot radius ã, calculated with equations (5)
and (6) for ε̃ = 1/2 and ω̃p = 0 (no excitonic resonance), are plotted in figure 1. For a given
PD radius ã, the photon n-eigen-harmonics can be interpreted in terms of the interference
pattern of the order n, which arises due to the partial reflection of the light field at the PD
spherical boundary. The contrast of the interference pattern as well as the radiative lifetime of
PD photons, τn = −1/(2 Im{ω0

n}), strongly depend upon ε̃, i.e. upon the jump of the dielectric
constant from εb at r � a to εd at r > a.

In the presence of the dipole-active dispersionless exciton state with frequency ω̃T = 1,
the PD photon frequencies ω̃0

n no longer characterize the true eigenstates, due to the resonant
exciton–photon interaction. Within the completely coherent picture of exciton–photon
coupling (γx = 0), the uncoupled photon and exciton states are replaced by PD polariton
eigenwaves. In this case the dispersion equations (3) and (4) yield the PD polariton eigen-
frequencies ω̃ = ω̃

pol
n (ã). By analysing the way (topology) the PD polariton dispersion arises

from the initial exciton and photon terms, ω̃T (ã) = 1 and ω̃0
n(ã), and develops with increasing

Rabi frequency ω̃p, we distinguish two limits of exciton–photon interaction in PDs: the weak
(small ω̃p) and strong (large ω̃p) coupling regimes.

The weak coupling regime. The PD polariton dispersion ω̃ = ω̃
pol
n (ã), calculated with

equation (5), is illustrated in figure 2 for the weak coupling limit. The resonant crossover
between the PD photon and exciton eigen-frequencies, which occurs when Re{ω̃0

n(ã = ãn)} =
1, does not result in any drastic, ‘topological’ changes of the PD polariton dispersion curves.
In other words, the PD polariton dispersion curves can naturally be classified in terms of the
photon-like, ω̃

pol
n = ω̃

γ
n (thin blue lines in figure 2), and exciton-like ω̃

pol
n = ω̃x

n (thick red
curves in figure 2) polariton branches: ω̃

γ
n (ã) and ω̃x

n (ã) are nearly identical to ω̃0
n(ã) and

ω̃T (ã) = 1, respectively. The weak resonant exciton–photon coupling does not lead to the
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Figure 2. The PD polariton eigen-frequencies ω̃ = ω̃
pol
n=1,2,3...(ã) for the TE1 mode in the weak

coupling regime; ω̃p = 0.01 and ε̃ = 0.5. The photon-like (exciton-like) dispersion curves are
shown by thin blue (thick red) solid curves. In the right-hand-side figures, the polariton dispersion
curves are plotted on a magnified scale to illustrate the fine structure of the exciton-like modes (the
frequency band is very close to ω̃T = 1).

interconnection between the PD photon-like and exciton-like branches in the vicinity of ãn,
where the most significant change of the dispersion curves takes place. Thus the photon-
like (exciton-like) polariton dispersion branch can be interpreted as ω̃0

n(ã) (ω̃T (ã)), slightly
deformed near ã = ãn (see the right-hand-side plots of figure 2). The condition Re{ω̃0

n(ã)} = 1
yields

ãn �
{

(n + 1/2) π, (n = 0, 1, 2, . . .) for TM1 (ε̃ < 1) and TE1 (ε̃ > 1),

nπ, (n = 1, 2, . . .) for TM1 (ε̃ > 1) and TE1 (ε̃ < 1).
(7)

For the PD radius ã � ãn, a negative imaginary part of the exciton-like n-polariton eigen-
harmonics, Im{ω̃x

n}, has a local minimum (see the bottom right-hand-side plot of figure 2). In
this case the excitonic state resonates with the PD photon n-eigen-harmonics and can more
effectively decay into the bulk photon modes. The electric and magnetic eigen-fields of the
photon-like TE1 polaritons are plotted in figure 3 for the radial energy states n = 1, 2 and 3.

The strong coupling regime. In figure 4 we plot the PD polariton dispersion calculated
with equation (5) for the strong coupling limit. In this case one has a well-developed
polariton effect: a drastic change, so-called anti-crossing, of the initial PD photon and
exciton terms occurs near ã � ãn. Strong hybridization and interconnection between the
PD photon and exciton dispersions take place, so that the lower (upper) polariton dispersion
branch n is exciton-like (photon-like) at ã 	 ãn and becomes photon-like (exciton-like) at
ã � ãn. According to figure 4, we classify the PD polariton spectrum in terms of the upper

(ω̃pol
n = ω̃U

n > ω̃L =
√

1 + ω̃2
p) and lower (ω̃pol

n = ω̃L
n � ω̃T ) polariton branches. For the

TM1 polariton eigen-states, in both the strong and weak coupling regimes, one extra mode has
a frequency ω̃

pol
S = ω̃

pol
n=0 in the optical ‘stop band’, 1 � ω̃

pol
S � ω̃L . This is a well-known

Fröhlich surface mode [10, 22], and its frequency ω̃
pol
S → [1 + ω̃2

p/(1 + 2ε̃)]1/2 when ã → 0.
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Figure 3. The eigen-fields of the photon-like polariton TE1 mode (the weak coupling regime), for
n = 1, 2 and 3. The spherical coordinates are given by {r, φ, θ}, where r is the radial distance
from the centre of the PD and φ and θ are the polar angles. The PD parameters are the same as in
figure 2.

While the polariton dispersion in bulk semiconductors, ω̃
pol
bulk = ω̃

pol
bulk(k), deals with the

dependence of the polariton frequency against the polariton wavevector k [8, 19, 20, 24], the PD
polariton dispersion refers to the PD-radius dependence, ωpol

n = ω
pol
n (a). Similar to the former

case, when for a given k only two initial eigenstates (photon k and exciton k) couple each other,
in the spherical PD of a given radius a only two energy states, ω0

n and ωT , interact resonantly
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Figure 4. The PD polariton eigen-frequencies ω̃ = ω̃
pol
n=1,2,3...(ã) for the TE1 mode in the strong

coupling regime; ω̃p = 1.95 and ε̃ = 0.52 (the parameters refer to dipole-active optical phonons
in a vacuum-placed LiF sphere). The upper (lower) dispersion branches are depicted by thin blue
(thick red) solid curves.

and independently of the other energy states. This can easily be illustrated by equations (5)
and (6) where the energy number n appears on the right-hand-side of the equations and labels
the pairs of the resonantly interacting PD states. If the maximum number of the energy states
we examine is N , the factor N degeneracy should be attributed to the non-dispersive exciton
state. In this case the resonant exciton–photon interaction removes the degeneracy of the initial
exciton term even in the limit of weak exciton–photon coupling (see the right-hand-side plots
in figure 2).

3. The radiative lifetime of PD polaritons and coherent excitons

In our model the incoherent damping rates due to phonon scattering, etc are neglected (γx = 0),
but the eigenfrequencies given by the dispersion equations (3) and (4) are complex. This is
due to the intrinsic escape of photons from the photonic dot. In this case Im{ω̃n} < 0 and

n = −2 Im{ω̃n} is the width of the mode, or the inverse optical lifetime τn = 1/
n [25].
In the previous section we have already discussed the numerical solution of the dispersion
equations and now proceed to develop analytical approximations for the radiative lifetime. In
particular, we consider the cases of small and large radius, ã, for states with angular momentum
l = 1, i.e. TE1 and TM1 modes.

For a small radius (ã 	 1) in both the weak and strong coupling limits, one has

Photon-like/upper branch: 
γ,U
n = 2BnωT /ã,

Exciton-like/lower branch: 
x,L
n =



2ω̃2
p[(1 + 2ε̃) + ω̃2

p]2(ε̃)5/2ã3ωT

(1 + 2ε̃)2[(1 + 2ε̃)2 + ω̃2
p]

for TM1, n = 0 (Fröhlich) mode,
2ω̃2

p(ε̃)
5/2ã7ωT

A4

for TM1, n = 1, 2, 3 . . . modes,
2ω̃2

p(ε̃)
3/2ã5ωT

A4

for TE1, n = 1, 2, 3 . . . modes,

(8)

where Bn = − Im{Zn} � √
ε̃. A = nπ for TE1 and A = (n + 1/2)π for TM1 modes. Here

Z = Zn is the single solution of equation:

Z = arctan

[
Z ε̃

iZ
√

ε̃ − 1 + ε̃

]
+ nπ, (9)
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for the TE1 modes, and

Z = arctan

{−iZ [Z 2ε̃ + (1 − iZ
√

ε̃)(ε̃ − 1)]

Z 3ε̃
√

ε̃ + (Z
√

ε̃ + i)(1 − ε̃)

}
+ nπ, (10)

for the TM1 modes. For small radius dots, equation (8) gives for the ground-state (n = 0)
exciton-like/lower-branch TM1 polaritons (Fröhlich mode) the well-known result, 


X,L
n=0 ∝

ã3 [12, 13, 26]. Usually, such a behaviour is interpreted in terms of the PD-size-dependent
coherent optical volume: for very small ã the optically coherent area is given by the PD volume,
i.e. is ∝ã3. With increasing ã towards ã ∼ 1, the volume-dependent PD oscillator strength
saturates, approaching the strength of exciton–photon interaction in the (PD) bulk material.
According to equation (8) for n � 1 one has 
X,L

n (ã → 0) ∝ ã7 for the TM1 modes and

X,L

n (ã → 0) ∝ ã5 for the TE1 modes. Thus, for a small PD radius, 

X,L
n=0 ∝ ã3 absolutely

dominates over 
X,L
n associated with the energy modes n > 0.

For a large radius (ã � 1) in the weak coupling regime one has:

Photon-like branch: 
γ
n = 2CnωT /ã,

Exciton-like branch: 
x
n = 2(A + π/2)2ω̃2

pωT√
ε̃ω̃4

L ã3
.

(11)

Here Cn = − Im{Rn}, ω̃L =
√

1 + ω̃2
p is the longitudinal frequency, and R = Rn is the single

solution of the equation:

R = 1

ω̃L
arctan

[
Rε̃ω̃L

iR
√

ε̃ω̃2
L − ω̃2

L + ε̃

]
+ nπ, (12)

for the TE1 modes, and

R = 1

ω̃L
arctan

{−iRω̃L [R2ε̃ω̃2
L + (1 − iR

√
ε̃)(ε̃ − ω̃2

L )]

R3ε̃
√

ε̃ω̃2
L + (R

√
ε̃ + i)(ω̃2

L − ε̃)

}
+ nπ, (13)

for the TM1 modes.
According to equation (11), 
x

n (ã → ∞) ∝ 1/ã3 decays with increasing dot radius much
more rapidly than 


γ
n (ã → ∞) ∝ 1/ã, i.e. at large ã one has 
x

n /

γ
n 	 1. The radiative

lifetime for the photon-like polaritons at large radius, τ
γ
n = 1/


γ
n = ã/2CnωT , is 2Cn times

smaller than the time needed for the propagation of the light from the centre of the sphere to
the surface, τball = ã/ωT . Usually Cn ∼ 1, so that we interpret τ

γ
n (ã → ∞) in terms of the

time needed for the ballistic escape of photon-like polaritons from the large radius PD sphere.
A similar ballistic decay channel is absent for the exciton-like polaritons because in our model
the exciton state is assumed to be without translational spatial dispersion, i.e. the excitons are
‘mechanically’ non-propagating modes.

In figure 5 we plot 

x,γ

n=0 = 

x,γ

n=0(ã), numerically calculated from the dispersion
equation (4), for the case of weak PD-exciton–photon coupling. The behaviour of 


x,γ

n=0 in
the limits of small and large PD radius is highlighted in figure 6, which demonstrates the very
good agreement of the derived approximations (8) and (11) with direct numerical solution of
the dispersion equations.

In the weak coupling limit, according to equations (8) and (11), the ratio between the
radiative lifetimes of photon-like and exciton-like PD polaritons, associated with the energy
level n = 0 (TM1 Fröhlich mode), for a small radius is

τ x
0 /τ

γ

0 = B0[(1 + 2ε̃)2 + ω̃2
p]

ω̃2
p

[
1 + ω̃2

p/(1 + 2ε̃)
]2

ε̃5/2ã4
, (14)
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Figure 5. The dimensionless polariton radiative widths of the TM1 mode, 
̃x
n=0 = 
x

n=0/ωT (solid
curve) and 
̃

γ

n=0 = 

γ

n=0/ωT (dashed curve), against the dimensionless PD radius ã. The plot
refers to the weak coupling limit of exciton–photon interaction in a cyanine dye J aggregate with
ω̃p = 0.09 and ε̃ = 0.5.

Figure 6. 
̃
x,γ

n=0 = 

x,γ

n=0/ωT calculated with dispersion equation (4) (solid curve) and with
approximations (8) and (11) (open circles): for ã 	 1, the exciton-like (a) and photon-like (b)
polariton dispersion branches; and for ã � 1, the exciton-like (c) and photon-like (d) dispersion
branches. The PD parameters are the same as for figure 5.

and for a large radius:

τ x
n /τ γ

n = Cn

√
ε̃ω̃4

L ã2

(A + π/2)2ω̃2
p
, (15)

for levels with the energy number n. Thus for both limits of the radius, the radiative lifetime
of the exciton-like polaritons is greater than that of the photon-like polaritons.

Numerical evaluation of equations (3) and (4) shows that, for the weak coupling regime,
the real parts of the frequencies of the photon- and exciton-like polariton branches approach
asymptotic values, ω̃

γ
n → 0 and ω̃x

n → ω̃L , as ã → ∞. In the strong coupling regime these
asymptotic limits are swapped and become ω̃U

n → ω̃L and ω̃L
n → 0, as ã → ∞. Thus in the
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strong coupling regime and for ã � 1 one has

Upper branch: 
U
n =


2(A − π/2)2ω̃2

pωT√
ε̃ω̃4

L ã3
for TM1 mode, ε̃ > 1,

2(A + π/2)2ω̃2
pωT√

ε̃ω̃4
L ã3

for all other modes,

Lower branch: 
L
n = 2CnωT /ã.

(16)

In order to evaluate the total radiative lifetime τn , associated with a PD exciton, one needs
to determine how the energy of incoming excitons is split between the upper and lower polariton
dispersion branches. In our approach we assume a coherent distribution of the PD exciton in
the energy state n between two relevant polariton branches, (x, L), n and (γ, U), n. The above
assumption is consistent with the kinetic population of the polariton states by exciton–exciton
and exciton–phonon scattering, if ã � ãn .

The excitonic and photonic components of each polariton dispersion branch, Xn and Yn ,
satisfy the polariton sum rule [8]:

Xγ,U
n + X x,L

n = 1, Y γ,U
n + Y x,L

n = 1,

Xγ,U
n + Y γ,U

n = 1, X x,L
n + Y x,L

n = 1.
(17)

The excitonic component is given by X = Wexc/W , where Wexc is the energy density associated
with the excitonic polarization, and W is the total electromagnetic energy density equal
to [19, 24, 27]

W = εbε0 |E|2
4

+
µ0 |H|2

4
+

1

4εbε0ω2
p

(|ωP |2 + ω2
T |P |2). (18)

Here E and H are electric and magnetic fields, and P is the excitonic polarization. A
non-magnetic semiconductor with no excitonic dispersion (Frenkel excitons) is assumed.
Equation (18) yields

W = 1

4
εbε0 |E|2

1 +

√√√√(1 +
ω̃2

p

1 − ω̃2

)(
1 +

ω̃2
p

1 − ω̃∗2

)
+

(ω̃ω̃∗ + 1)ω̃2
p

(1 − ω̃2)(1 − ω̃∗2)

 . (19)

The exciton part of the energy is Wexc = W − Wphot , and

X = W − Wphot

W
. (20)

Here the photon part of the energy, Wphot , is given by

Wphot = W

∣∣∣∣
ω̃p=0

= 2
ε0εb |E|2

4
. (21)

Note that equations (17)–(21) deal with intrinsically complex polariton frequencies ω̃ = ω̃n ,
due to a finite radiative lifetime of PD polaritons.

Within our picture of the coherent distribution of incoming PD excitons among the relevant
polariton dispersion branches, the lifetime τ X

n of level n is τ X
n = 1/
X

n , where 
X
n is given by


X
n = Xγ,U

n 
γ,U
n + X x,L

n 
x,L
n . (22)

In figure 7 we plot the dependence 
X
n = 
X

n (ã) for n = 0, 1 and 2. The maximum values of

X

n refer to the PD radius 2a � 2an � nλ/2, where λ = (2πc)/(ωT
√

εb) is the wavelength
of the light field resonant with the exciton state. In this case, the photon spatial quasi-eigen-
harmonics nλ/2, which can be interpreted in terms of constructive interference giving the
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Figure 7. The exciton radiative width 
̃X
n=0,1,2 = 
X

n=0,1,2(ã)/ωT calculated with equation (22).
The bold solid curves refer to the radius range near the resonant crossover between the PD photon
and exciton dispersions, ã � ãn , where the coherent distribution of the exciton state between the
polariton branches can occur. This simulation models a cyanine dye J aggregate with ω̃p = 0.09
and ε̃ = 0.5.

standing light field pattern inside the spherical photonic dot, resonates with the exciton state.
The first, less-developed maximum of 
X

n (ã) is due to the TE1 mode, while the second one,
which occurs at larger values of ã, is attributed to the TM1 mode (see figure 7).

Our model is mostly relevant to ã � ãn. For either very small, ã 	 1, or very large,
ã � 1, PD radius, the excitonic radiative width 
X

n , evaluated by equation (22), is dominated
by the photon-like polariton branches. In this case, the relevant polariton energies are rather
far from the energy ω̃T = 1 of the optically undressed excitonic state, and, therefore, the
coherent distribution of the incoming excitons among the polariton states is unlikely to occur.
Nevertheless, to complete our description of 
X

n , below we examine analytic approximations
of equation (22) for ã 	 1 and ã � 1.

For ã 	 1, in both weak and strong limits of exciton–photon interaction, we obtain from
equations (8), (20) and (22):

Xγ,U
n = ω̃2

p(ã
2 + B2

n )ã2

[(ã2 + B2
n ) − D2

n]2 + 4D2
n B2

n

, X x,L
n = 1 − Xγ,U

n � 1,


X
n = X x,L

n 
x,L
n +

2BnωT ω̃2
p(ã

2 + B2
n )ã

[(ã2 + B2
n ) − D2

n ]2 + 4D2
n B2

n

� 2ωT ω̃2
p B3

n ã

(B2
n + D2

n)
2
,

(23)

where Dn = Re{Zn} and Zn is given by equations (9) and (10). Equation (23) shows that
coherent distribution between the polariton branches results in the linear dependence 
X

n ∝ ã.
This is due to the strongly dominant contribution to the optical decay from the photon-
like/upper-branch polariton levels, i.e. in equation (22) one has Xγ,U

n 

γ,U
n � X x,L

n 
x,L
n , if

ã 	 1.
For ã � 1 in the weak coupling regime, equations (11), (20) and (22) yield

Xγ
n = ω̃2

p

(1 + ω̃2
p)

, X x
n = 1 − Xγ

n = 1

(1 + ω̃2
p)

,


X
n = 2CnωT ω̃2

p

(1 + ω̃2
p)ã

+
2(A + π/2)2ω̃2

pωT√
ε̃ω̃4

L(1 + ω̃2
p)ã

3
.

(24)
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In a similar way, for ã � 1 and the strong coupling regime, one derives from equations (16),
(20) and (22):

XU
n = 1

(1 + ω̃2
p)

, X L
n = 1 − XU

n = ω̃2
p

(1 + ω̃2
p)

,


X
n = 2CnωT ω̃2

p

(1 + ω̃2
p)ã

+
2ω̃2

pωT√
ε̃ω̃4

L (1 + ω̃2
p)ã

3

{
(A − π/2)2 for the TM1 mode, ε̃ > 1,
(A + π/2)2 for all other modes.

(25)

Thus for ã → ∞ equations (24) and (25) are approximated by the same formula:


X
n � 2CnωT ω̃2

p

(1 + ω̃2
p)ã

. (26)

Equation (26) yields τ X
n ∝ ã, which can be interpreted in terms of the ballistic escape

(‘optical evaporation’) of optically dressed excitons from large-size spherical photonic dots.
The ratio between radiative time τ X

n = 1/
X
n and the time for the propagation of the light from

the centre of the sphere to the surface, τball, is τ X
n /τball = 1/(
X

n τball) = (1 + ω̃2
p)/(2Cnω̃

2
p). In

this expression the term ω̃2
p/(1+ω̃2

p) takes into account the excitonic component of the polariton
branch with zero asymptotic frequency as ã → ∞ (photon-like branch for the weak interaction
regime, lower-branch for the strong). For the weak coupling regime (e.g. for J aggregates with
ω̃p = 0.09) the exciton part is very small and τ X

n /τball � 1. For the strong coupling regime,
when ω̃p � 1, the excitonic component is of the order of unity so that τ X

n /τball � 1/2Cn ∼ 1.

4. Transition between the strong and weak coupling regimes

According to the classification proposed in section 2, in photonic dots the weak coupling regime
of exciton–photon interaction deals with photon-like and exciton-like polariton dispersions,
ω

pol
i=1 � ωγ (a) and ω

pol
i=2 � ωx(a), while the strong coupling limit refers to the well-developed

upper- and lower-branch polariton eigenfrequencies, ωpol
i=1 = ωU (a) and ω

pol
i=2 = ωL (a). Within

a completely coherent picture, one can easily control the transition between these two limits
simply by changing ωp, i.e. the oscillator strength of exciton–photon interaction, and keeping
all other parameters unchanged. This intrinsic transition, which occurs at a critical value of ωp,

i.e. ωp = ωcr
p , can be visualized as the intersection of two dispersion curves, ω

pol
i=1 = ω

pol
i=1(a)

and ω
pol
i=2 = ω

pol
i=2(a), in a three-dimensional space (a, Re{ωpol}, Im{ωpol}). The topology of

the polariton dispersion curves changes at ωp = ωcr
p , so that for ωp � ωcr

p (ωp � ωcr
p ) one

has the ‘crossing’ (‘anti-crossing’) behaviour of Re{ωpol
i=1} and Re{ωpol

i=2}, i.e. the weak (strong)
coupling regime. The transition is illustrated in figure 8.

The intersection point, which occurs at a critical PD radius, a = acr
n � an, is characterized

by the degenerate roots, ω
pol
i=1 = ω

pol
i=2. Thus, the criterion for the transition is given by

Re{ω̃γ,U
n } = Re{ω̃x,L

n },
Im{ω̃γ,U

n } = Im{ω̃x,L
n }. (27)

For a given PD energy level n, equations (27) can also be interpreted as the relationship
between two sets of the critical parameters: (ãcr

n , ω̃cr
p ) for the constant ratio of the background

dielectric constants and (ãcr
n , ˜εcr) for the constant oscillator strength of exciton–photon

interaction. The latter set refers to the transition between two regimes, which is induced
by changing ε̃. This case, illustrated in figure 9, can be realized experimentally by changing
the background dielectric constant εd of the medium surrounding the PD, e.g. by applying an
external mechanical pressure.
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Figure 8. Transition between the weak and strong coupling limits for the TE1 mode, n = 1 and
ε̃ = 0.5. The critical value of the oscillator strength is given by ω̃cr

p = 0.254; (a) weak coupling
regime, ω̃p < ω̃cr

p , (b) ω̃p = ω̃cr
p and (c) strong coupling regime, ω̃p > ω̃cr

p .

Figure 9. Transition between the weak and strong coupling regimes, induced by changing ε̃, for the
TE1 mode, n = 3 and ω̃p = 0.09. The critical value of the relative dielectric constant, ε̃ = εd/εb,
is given by ε̃cr = 0.484; (a) strong coupling regime, ε̃ < ε̃cr , (b) ε̃ = ε̃cr and (c) weak coupling
regime, ε̃ > ε̃cr .
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Figure 10. Approximation (triangle points) by the cubic equation (28) of the polariton dispersion
curves (solid curves) calculated with the relationships (5) and (6). TE1 mode, ε̃ = 0.5 and
ω̃p = 0.01.

Considering ω̃2
p as a small dimensionless parameter, we approximate the dispersion

equations (5) and (6) by the cubic equation:

ω̃3 − a2ω̃
2 − a1ω̃ − a0 = 0, (28)

where

a0 = −a2 +
iω̃2

p

√
ε̃

2ã(ε̃ − 1)
, a1 = 1 +

ω̃2
p

2
, and

a2 =


1

ã
[arctan(−i

√
1/ε̃) + nπ] for TM1 modes,

1

ã
[arctan(−i

√
ε̃) + nπ] for TE1 modes.

(29)

In figure 10 we show that the cubic approximation (28) is very accurate for ã � ãn , i.e. where
the transition between two coupling limits occurs. Two roots of equation (28) approximate
ω̃ = ω̃

pol
i=1,2, while the third one is unphysical because it has a negative real part. By applying

approximation (28), we reduce the criterion (27) to the following analytic equation:

( 1
3 a1 + 1

9 a2
2)

3 − [ 1
6 (a1a2 + 3a0) + 1

27 a3
2]2 = 0. (30)

Equation (30) allows us to readily calculate the relationships for the critical parameters,
ω̃cr

p = ω̃cr
p (ε̃) and ãcr

n = ãcr
n (ε̃); ε̃cr = ε̃cr(ω̃p) and ãcr

n = ãcr
n (ω̃p) (see figure 11).

The transition between the weak and strong coupling regimes influences the radiative decay
of coherent PD excitons. In figure 12 we plot the dependence 
̃X

n = 
X
n /ωT (ã) calculated with

equation (22) for the constant Rabi frequency ω̃p and for the dielectric permittivity ε̃ changing
around its critical value ε̃cr (see also figure 9). According to the plot, a ‘vertical-wedge’ shape
of 
̃X

n = 
̃X
n (ã), which is accompanied by a jump of the derivative d
̃X

n /dã at ã = ãcr
n � ãn,

occurs for ε̃ = ε̃cr. This is illustrated by figure 13(a). In a similar way, the derivative d
̃X
n /dε̃

changes its dependence against the PD radius ã, with increasing ε̃ from ε̃ < ε̃cr to ε̃ > ε̃cr, and
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Figure 11. The dimensionless critical parameters evaluated with equation (30); (a) ω̃cr
p = ω̃cr

p (ε̃),
(b) ãcr

n = ãcr
n (ε̃), (c) ε̃cr = ε̃cr(ω̃p) and (d) ãcr

n = ãcr
n (ω̃p).

Figure 12. The radiative width of optically dressed PD excitons, associated with the energy state
n = 3, against the dimensionless PD radius ã. The contributions from both TE1 and TM1 are
included, ω̃p = 0.09 and ε̃cr � 0.484.

undergoes a jump at ã = ãcr
n for ε̃ = ε̃cr (see figure 13(b)). Thus the discontinuous behaviour

of the derivatives of 
̃X
n at the critical values of the parameters is a direct manifestation of

the transition between the two limits of exciton–photon coherent coupling in semiconductor
photonic dots. Note that, as we have already discussed, equation (22) is mostly relevant to
ã � ãn � ãcr

n , i.e. it is applicable to the above analysis.
High-precision modulation spectroscopy [28] is potentially applicable to visualize the

transition between photon-like and exciton-like PD polaritons to the well-developed PD
polariton states. In this case, the modulation of εd, i.e. of ε̃, can be achieved by applying
a time-dependent pressure [29] or electric field [30]. The PD radius modulation can probably
be realized by the surface acoustic wave technique, which has recently been adapted to small
spheres [31].
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Figure 13. The derivatives (a) d
̃X
n=3/dã and (b) d
̃X

n=3/dε̃ versus the PD radius ã. The parameters
are the same as for figure 12. While both TE1 and TM1 modes contribute to 
̃X

n=3, the critical value
ε̃cr � 0.484 refers to the transition associated with the TE1 mode.

5. Conclusions

In this paper we have developed polariton optics of dispersionless excitons in spherical photonic
dots of the radius a ∼ λ, where λ = (2πc)/(ωT

√
εb) is the wavelength of the light field

resonant with the exciton state. The following conclusions summarize our results.

(i) The classification of the PD optical states is given in terms of either photon-like and
exciton-like polaritons (the weak coupling regime) or upper- and lower-branch polaritons
(the strong coupling regime), according to the dispersion relationship ω

pol
i=1,2 = ω

pol
i=1,2(a).

(ii) The radiative width 
X
n of excitons, coherently distributed between the PD polariton states,

increases ∝a3 with increasing small radius a 	 λ, reaches maximum at 2a = 2an ∼
nλ/2, and decays ∝1/a with further increase of the PD radius towards a � an. The
maximum values of 
X

n (n = 0, 1, 2, . . .) are attributed to the PD geometrical resonances,
when the PD sphere resonates with nλ/2 photon harmonics.

(iii) The transition between the weak and strong coupling regimes of exciton–photon
interaction in semiconductor PDs is described in terms of the topological transition
(‘crossing’ against ‘anti-crossing’) between two polariton dispersion curves, ω

pol
i=1 and

ω
pol
i=2, in a three-dimensional space (a, Re{ωpol}, Im{ωpol}). The transition is characterized

by two sets of the critical parameters, (acr
n , ωcr

p ) or (acr
n , ε̃cr).

(iv) The transition between two limits of the PD exciton–photon interaction results in
discontinuous behaviour (jumps) of the derivatives d
X

n /da and d
X
n /dε̃ at critical points

(acr
n , ε̃cr). The use of modulation spectroscopy is proposed in order to visualize the above

spectral jumps.
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